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AbsImcL Permlation pmbabilities are obtained for sitbband Bethe lattices where the 
interronnection of sites and bonds is restricted ty a "elation h u t i o n  which depends 
on the overlap, $2, between site and band probability distributions. The behaviour of the 
petrolation phase diagram and percolation probabilities ar $2 changes is discussed. The 
model prewnls interesting and qualilatively OEW features in mmpatison with a dassical 
(noncomlared) site-bond permlation process. 

1. Introduction 

The mixed site-bond percolation problem has been extensively studied, both due to 
its theoretical importance and to its many applications in the field of technology, 
such as polymer gelation, capillary phenomena in porous media, fracture of porous 
concrete by cracks, and others (1-41. in random site-bond percolation both sites and 
bonds in a lattice are randomly occupied and one requires for connected clusters that 
the sites are joined by occupied bonds and the bonds are joined by occupied sites 
[5-9]. However, the degree of randomness is usually limited in natural phenomena 
by correlations, which sometimes lead to a qualitatively different behaviour. Our 
purpose here is to study the percolation properties of a site-bond lattice in which 
the characteristic properties of these two entities are statistically described by a joint 
probability distribution involving a correlation function. 'Ib be specific, we shall base 
our discussion on a sitebond correlated model which has proven to be useful in 
the description of porous media [10-12] and is easily applicable to other problems, 
such as the behaviour of adsorbates on energetically heterogeneous surfaces, polymer 
gelation, and others [13-151. We shall use a Bethe lattice, since this will allow an 
analytical approximate solution and a description of percolation probabilities valid, in 
a qualitative sense, for other lattices. 

2. Model of correlated porous network 

We represent a porous material by a network of interconnected sites (voids) and 
bonds (necks) of effective radii Rs and R,, respectively, distributed according to 
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frequency probability functions Fs(R,) and FB(RB), [lo]. The number of bonds 
emerging from a given site is the connectivity z of that site. For simplicity it is 
assumed that t is the same for all the sites. We suppose that site and bond sizes 
are statistically described by their frequency functions, Fs(R) and FB(R), such that 
Fs( R) d R  ( FB( R )  dR) is the probability of finding a site (bond) of size between R 
and R + d R  We can introduce the site and bond distribution functions, S( R) and 
B( R): 

R J Faccio et RI 

R 
S(R)  = 1 Fs( R) d R  

0 

representing the probability of finding a site or a bond, respectively, of a size smaller 
than or equal to R. 

In order to build the sitebond network we adopt the following Construction 
Principle: for a given site, its size is always greater than, or at least equal to, the 
size of any of its z bonds. ’RI ensure that all the sites corresponding to a given 
site distribution can be linked together, it is essential that all the bonds have sizes 
sufficiently small, such that 

B( R) S( R) for aU R. (2) 

Thus the bond size distribution curve must lie to the left of that corresponding to 
the sites. Overlap between the frequency curves is allowed (meaning that there exist 
some bonds of size R greater than that of wme sites not connected to them). When 
sites and bonds are brought together to form a network, they cannot be chosen 
independently. The fact that sites and bonds are not interconnected completely at 
random can be taken into a m u n t  by assuming that the sitebond connected pairs 
are statistically described by the joint distribution function: 

F(&., RB) d%dRB = Fs(&)FB(RB)+(& RB) d%.dRB 0) 
where F(&, R,) dRsdRB is the probability of finding a site whose radius is in 
the range (R,, R, + a&), connected to a bond whose radius is in the range 
( R,, R, + dRB); and +( R,, R,) is a correlation function characterizing the porous 
medium and carrying valuable information related to the ‘genesis’ of the smcture. 
If + = 1 for all the values of R, and R,, the events of finding R, and RB would 
be independent and the network would be built completely at random. q5 # 1 means 
that these events are correlated. The fact that a bond of size RB cannot be connected 
to the site of size R, < R, is then taken into account by the condition 

4(R,, RB) = 0 for R, < R,. (4) 

An expression for the correlation function can be developed hy assuming a method 
of generation of what are the fundamental building blocks of the network, namely a 
site with its z bonds, which will build up the complete network once they are brought 
together. 
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We chose sites of increasing size, starting with the smallest sizes, and assigned to 
them a set of bonds, each one of a size determined by the maximum randomness 
allowed by the construction principle and by the availability of bonds. If condition (2) 
is observed, then such a procedure is always possible since, from the beginning, the 
smaller bonds have not yet been assigned to any site. This procedure continues up 
to the exhaustion of all the sites. An intermediate stage of such a branching process 
is schematically pictured in figure 1, where the site and bond frequency functions, 
Fs(R) and FB(R), are represented with a certain degree of overlapping. At this 
stage, some bonds (area a’) have already been assigned to sites of size smaller than 
R, (area a), while bonds of size smaller than R, (area b’), randomly chosen from 
the available ones (area d), are going to be assigned to sites of size between R, and 
R, + dR, (area b). The function 4, which guarantees that no unmatched sites or 
bonds are left after the assignment procedure has been completed, is given by [IO] 

! ,  

Figure L A geometrical interpretation of [he Nie by which bonds are assigned to sites. 

If the inverse procedure had been followed, namely to take bonds from the larger 
to the smaller sizes, and then assign to them site sizes with the maximum randomness 
allowed by the construction principle, we would have obtained for the correlation 
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function: 

R J Faccio et a1 

As can be easily shown, both expressions (5) and (6) for the correlation function 
are completely equivalent 

We remark that these expressions for q5 are calculated in such a way that the 
maximum degree of randomness is obtained in the network That is, 4 calculated in 
this way produces the maximum number of possible representations in a statistical 
ensemble of porous networks whose site and bond frequency functions are held 
constant. We call this a 'verisimilar' network 

The dual distribution, equation (3), is now completely determined and it is 
illustrative to show, in a qualitative way, how different kinds of porous structure are 
generated by a few typical site-bond distributions with different degrees of overlap 
R (we realize that the overlap degree is related to the correlation function q5). In 
figure 2(a), with R = 0, we have an uncorrelated structure where sites and bonds are 
very well differentiated entities randomly assigned to each other. In figure 2(c), with 
R N 1, we have the opposite case, namely a very correlated structure, where bonds 
connected to a given site are of almost the same size as that of the site. In practice, 
this structure can be considered as a collection of macroscopic domains of uniform 
pore size. In figure 2(b), with R z 0.5, we have an intermediate situation, where we 
find a mriety of interconnected pore sizes (a given site can be connected to bonds 
ranging from very small to a size similar to its own) forming a quite intricate structure 
with a certain short-range order. This intermediate case may be representative of the 
great majority of porous media. It is to be expected that these different porous 
structures will present a different percolation behaviour, which will be shown in the 
next section. 

Figure 2 Three Unds of porous structure delemined by different values for the overlap 
n. 

In the simple case where sites and bonds are uniformly distributed: 
for s < R, < s + A 
otherwise (7) 
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Figure 3. (a) Uniform size distributions of siles and bonds showing lhe overlap R 
between them. (6) me Bethe lattice cf mordinalion number I. 

f o r b <  R B <  b + A  
otherwise. FB(RB) = ( 

As illustrated in figure 3(a), the correlation function takes the simple form 

exP[-(Rs - s)/(l-  R ) l / ( l -  Q) for R, < s,& < b+ A 
exP[-Q/(l- Wl/( l -  a)  for R, < s,& > b+ A 

exp[-(b + A - RB)/( 1 - R)]/( 1 - R )  for R, > s, R, > b f A 
4(RS’RB)’ e x p [ - ( & - R B ) / ( l - R ) ] / ( l - n )  for R , > s , & < b + A  

(9) 
{ 

where R is the overlap between Fs( &) and FB( E,),  represented by the shaded area 
in figure 3(u). This parameter is now the one carrying the most valuable information 
on the physical characteristics of the porous network and our objective is to study 
how it affects the percolation properties of such a correlated network. 

3. Pentolation properties of the Bethe lattice 

In order to study the percolation properties of the site-bond network we must define 
when a site (or a bond) is considered to be ‘occupied’ (according to the percolation 
terminology). However, the most suitable definition will depend upon the real process 
to be considered. For example, in the case of mercury porosimetry 1161, at a given 
mercury pressure, a given site (bond) can be invaded by mercury if it is connected to 
an already invaded bond (site) and if its radius R,( RB) is greater than the critical 
Laplace radius %(cB) corresponding to that pressure. The critical radius may be 
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different for sites and for bonds since it depends on the pore geometry (for example, 
sites can be spherical and bonds cylindrical). 

We choose the following definition which replaces the word ‘occupied’ by ‘open’: 
a site pond) is considered to be open if its radius is greater than a critical radius 
%( cB). Accordingly we define the following elementary probabilities: 

R J Faccio et a1 

+A 

ps  = / F,( R,) dR,  = probability of finding an open site = {0) 
cs 

E = 1 - p, = probability of finding a closed site = { e )  

p ,  = / 
m =  1 - pB = p robability of finding a closed bond = {+} 

and, in a similar way, for greater clusters: 

b t A  
FB( R,) dR, = probability of finding an open bond = {-} 

SB 

pm = pBs = {O-) = 

%E = 1°-} 
PsK = Io+} 

p @ J =  {O- 0} 

PBE‘ = I-O+I 

and so on. All these probabilities are easily calculable in terms of p s , p B  and R in 
the case of uniform distributions (equations (7) and (8)). 

To obtain the percolation probabilities for a Bethe lattice of connectivity z 
(figure 3(b))  we follow the method introduced by h a m  [17] for the random case 
and generalized by Coniglio [E?] for correlated sites. Let P = 1- Ps(P = 1- PB) 
be the probability that every open walk from a chosen site (bond), supposedly open, 
be of finite length (a walk is said to be open if all its elements are open). From a 
given site there are z directions to follow, but there are only two from a given bond. 

4 B 
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If Qs(QB) is the probability that, starting at an open site (bond), an open walk in a 
given direction be finite, then 

s P = Q ”  S 

P = Q i  -B 

where, in an approximation taking into account the correlations cp to triplets, Qs 
and QB satisfy the following equations: 

Qs = P S S / P S  -k P % S / P S  t (PSBS/PS)Q~-’  

QB = P B / P B  + ( P E S / P B ) [ P ~ E ‘ / P s S  f ( P B ~ B ~ / P E S ) Q B ] ” - ’ .  

(10) 

(11) 
Here we have made the further assumption that pBB8 = pasB,, = . . . = pBSB(.-l) 

(see figure 3(b)). 
In the classical case where no correlations are present, !2 = 0, the well known 

solutions 
QS,B = 1 I QS,B -t 0 

for PSPB < 1/(2 - 1) 
for PSPB --t 1 

are obtained. 
In the general correlated case, explicit solutions a n  be obtained only for given 

values of the connectivity z. For simplicity, we take a Bethe lattice with z = 3. The 
accuracy of equations (10) and (11) vanes for the different regions of the ( p s , p B )  
space, since they depend on different powers of ps and pB.  For z = 3 it is convenient 
to consider the following procedure. 

(i) For PS < PB + 4 1  - 0): 

Qs = P S B / P S  + P s s , / P s  + ( P s w / P s ) Q ;  (12) 
(13) { Q B  = P & / P B  t ( P B S / P B ) Q i  

{ 

which are solved by finding Qs as 

P ~ / P ~ B S  - 1 if PS G 2pSml 
Q s = ( ~  otherwise. 

(ii) For ps > p B  + ~ ( 1  -a): 
QB = P ~ / P B  + ( Z + . s / s l p d l P p s ~ ~ / P e s  + ( P ~ ~ ~ / P ~ Q E J ~  
Qs = P S I P S  t ( P S B / P S ) & B  

(14) 
(15) 

2 
which are solved by finding QB as 

(PL, - 2~Ssprrm# -I- P B P B ~ ) / P B ~ B ,  if PB G ~ P B ~ B ,  

Q B = ( ~  otherwise. 
In the above procedure, o( is an arbitrary parameter whose value for an overall 

satisfactory solution is found to be CI = 0.6 for all values of Q. 
This allows the calculation of site and bond percolation probabilities, Ps and 

PB, respectively, and the percolation threshold as a function of p,, p B  and Q. 
?jrpical results for the simple case of uniform site and bond distributions are shown in 
figures 4 and 5. The approximations made in obtaining this solution introduce errors 
which are typical of a mean-field type of approximation, but are difficult to estimate 
quantitatively. However, we are here mainly interested in the qualitative behaviour 
of the percolation probabilities in correlated porous structures. 
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0 0.5 I 

F’igure 4 A percolalive phav transition diagram for the mmlated Bethe lattice of 
mordination 3, showing lhe transition tines for same values of lhe overlap where 
1 > n, > n, > o  

Figure S The behaviour of lhe percolalion probabilities Ps and PE, as functions of ps: 
(a) and (b) for a faed value of p~ and 1 > Rz > > 0: (c) and (d) for the ext r ”  
case n = 1 and pe, > pq.  

4. Discussion 

The phase diagram for the percolation transition, ie .  the threshold values of ps  and 
pE for which the percolation probabilities and PB become > 0, represented in 
figure 4, shows that the percolation region in the space (ps,pE) expands from the 
classical region for uncorrelated lattices, corresponding to R = 0, to the whole region 
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< p B  < 1) for R = 1. In fact, in the limit case R = 1 the percolation (O < PS < 1, 
problem has the simple solution: 

(i) for 

Q s = o  
p s G P B ( Q B = l - p s / p B  

(every open site belongs to the infinite duster) 

(U) for 

Qg=O (every open bond belongs to the infinite cluster) 
ps > ”{ Qs = 1 - P ~ / p s .  

This behaviour can be rationalized by considering that for R = 1 correlations 
are so suong that the lattice splits into macroscopic (infinite) sublattices in which aU 
connected sites and bonds have the same radii. So, if cB < %(ps < pB) and one 
starts at an open site, this is connected to z open bonds, each one of which is in turn 
also connected to a new open site, and so on. A symmetric argument is also valid 
for % < c& > ps ) .  Phase diagrams for 0 < R < 1 are obviously intermediate 
between the two extreme cases. 

The behaviour of the percolation probabilities Ps and PB, for a k e d  value of 
pB and as a function of ps (figure 5) presents some most interesting features. In a 
classical (uncorrelated) percolation process, after the infinite duster has been formed, 
the probability of a new open element (site or bond) being connected to the infinite 
cluster is greater than the probability of not being connected and this results in a 
monotonically increasing percolation probability (which measures the mass of the 
infinite cluster relative to the total mass of open elements). 

In our sitebond correlated model, on the contrary, for a given overlap 0, when 
p s  becomes greater than pB + (1 - R) (cs becomes smaller than cB), any new open 
site cannot belong to the infinite cluster because the necessary open bonds to do it 
have already been spent and this meam that the relative mass of the infinite cluster 
decreases with increasing ps ,  producing a maximum in Ps at ps = pB + (1 - R) 
(figure 5(a)). The maximum does not appear in PB (remember that here we are at 
a k e d  value of pB) since for cs < cB a new open bond will always have a connected 
open site (figure 5(b)). Figures S(c) and (d) represent the behaviour for the limit case 
Cl = 1, which can be rationalized through similar arguments. A completely symmetric 
situation is expected for PB and p, at k e d  ps ,  as a function of pg.  

The shifting of the percolation threshold to lower values as R increases and the 
variation of the shape of the percolation probabilities and PB as R changes 
are fundamental tools in the understanding of the behaviour of fluids in real 
porous materials. The ideas underlying the model presented here and some of 
our preliminary results have been used recently [12] in a qualitative way to explain 
the properties of the hysteresis loops observed in mercury porosimetry and nitrogen 
sorption for a great variety of porous materials. 
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